Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 12: 908492, 2022.
Article in English | MEDLINE | ID: covidwho-2154671

ABSTRACT

This is the first study on gut microbiota (GM) in children affected by coronavirus disease 2019 (COVID-19). Stool samples from 88 patients with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 95 healthy subjects were collected (admission: 3-7 days, discharge) to study GM profile by 16S rRNA gene sequencing and relationship to disease severity. The study group was divided in COVID-19 (68), Non-COVID-19 (16), and MIS-C (multisystem inflammatory syndrome in children) (4). Correlations among GM ecology, predicted functions, multiple machine learning (ML) models, and inflammatory response were provided for COVID-19 and Non-COVID-19 cohorts. The GM of COVID-19 cohort resulted as dysbiotic, with the lowest α-diversity compared with Non-COVID-19 and CTRLs and by a specific ß-diversity. Its profile appeared enriched in Faecalibacterium, Fusobacterium, and Neisseria and reduced in Bifidobacterium, Blautia, Ruminococcus, Collinsella, Coprococcus, Eggerthella, and Akkermansia, compared with CTRLs (p < 0.05). All GM paired-comparisons disclosed comparable results through all time points. The comparison between COVID-19 and Non-COVID-19 cohorts highlighted a reduction of Abiotrophia in the COVID-19 cohort (p < 0.05). The GM of MIS-C cohort was characterized by an increase of Veillonella, Clostridium, Dialister, Ruminococcus, and Streptococcus and a decrease of Bifidobacterium, Blautia, Granulicatella, and Prevotella, compared with CTRLs. Stratifying for disease severity, the GM associated to "moderate" COVID-19 was characterized by lower α-diversity compared with "mild" and "asymptomatic" and by a GM profile deprived in Neisseria, Lachnospira, Streptococcus, and Prevotella and enriched in Dialister, Acidaminococcus, Oscillospora, Ruminococcus, Clostridium, Alistipes, and Bacteroides. The ML models identified Staphylococcus, Anaerostipes, Faecalibacterium, Dorea, Dialister, Streptococcus, Roseburia, Haemophilus, Granulicatella, Gemmiger, Lachnospira, Corynebacterium, Prevotella, Bilophila, Phascolarctobacterium, Oscillospira, and Veillonella as microbial markers of COVID-19. The KEGG ortholog (KO)-based prediction of GM functional profile highlighted 28 and 39 KO-associated pathways to COVID-19 and CTRLs, respectively. Finally, Bacteroides and Sutterella correlated with proinflammatory cytokines regardless disease severity. Unlike adult GM profiles, Faecalibacterium was a specific marker of pediatric COVID-19 GM. The durable modification of patients' GM profile suggested a prompt GM quenching response to SARS-CoV-2 infection since the first symptoms. Faecalibacterium and reduced fatty acid and amino acid degradation were proposed as specific COVID-19 disease traits, possibly associated to restrained severity of SARS-CoV-2-infected children. Altogether, this evidence provides a characterization of the pediatric COVID-19-related GM.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Adult , Bacteroides/genetics , Bifidobacterium/genetics , COVID-19/complications , Child , Clostridium/genetics , Feces/microbiology , Gastrointestinal Microbiome/physiology , Humans , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
2.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1463766

ABSTRACT

Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N'-diacetyl-ß-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s-1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains-2x Fn3/Big3 and a carbohydrate binding module-that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.


Subject(s)
Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/metabolism , Clostridium/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Chitinases/chemistry , Chitinases/genetics , Clostridium/growth & development , Clostridium/isolation & purification , Gastrointestinal Microbiome , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
BMC Med ; 19(1): 37, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1079239

ABSTRACT

BACKGROUND: Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19. METHODS: Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils, neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of vegetable intake on lymphocyte counts. RESULTS: Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between inflammation and diet. CONCLUSION: A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white blood cells, and a fifth of the effect is mediated by the genus Collinsella. TRIAL REGISTRATION: The ClinicalTrials.gov registration identifier is NCT03479866 .


Subject(s)
Diet , Fruit , Gastrointestinal Microbiome/genetics , Leukocytes , Vegetables , Actinobacteria , Adult , Biomarkers/blood , COVID-19 , Clostridiales , Clostridium , Fasting , Female , Humans , Interleukin-6/blood , Leukocyte Count , Lymphocyte Count , Male , Mediation Analysis , Middle Aged , RNA, Ribosomal, 16S/genetics , Ruminococcus , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL